X-ray Fluorescence Microprobes

Barry Lai Advanced Photon Source

Scientific Need

Submicron microprobes are needed to study trace metals in life sciences:

- 1/3 of all known proteins contain metal cofactors
- Linked to diseases e.g. Alzheimer's, Parkinson's, ALS
- In drugs (Pt-based chemotherapeutic drugs)
- Intracellular labels (Qdots) and tools (nanovectors)

photo/radio(E > 3.2 eV) inducible charge separation

User Demand: XRF Microprobes at the APS

XRF Microprobes at the APS

	Disciplines	Energy	Optics	Resolution	Beamtime
GSECARS 13-ID	Geo/soil/env	4-21 keV	K-B	few μm	30%
PNC/XOR 20-ID	Geo/soil/env	4-27 keV	K-B	few μm	50%
MR-CAT 10-ID	Environ	5-27 keV	K-B	few μm	15%
Bio-CAT 18-ID	Bio/Med	4-13.5 keV	K-B	few μm	25%
XOR 2-ID-B	Soil/Env	1-4 keV	ZP	< 70 nm	20%
XOR 2-ID-D/E	Bio/Med	4-30 keV	ZP	250 nm	90%
CNM 26-ID	nano	3-30 keV	ZP	30 nm	100%

330%

And they are all oversubscribed 2-4x

Current NSLS Programs

- x13B materials science, μ-XRD mini-gap undulator
 white beam or Si(111), 3.8-24 keV
 10x3 μm spot size, 5x10⁹ ph/s, K-B or CRL
- X-26A environmental science, μ -XRF, μ -XAFS, μ -XRD Bending magnet white beam or Si(111) and Si (311), 4-30 keV, 11x5 μ m spot size, 3x10 9 ph/s, K-B
- X-27A environmental & life science, μ-XRF, μ-XAFS

 Bending magnet

 white beam or Si(111) and Si (311), 4-30 keV,

 15x10 μm spot size, 5x109 ph/s, K-B

Hard X-Ray Microprobes at NSLS-II

Primary Beamline

A new XRF microprobe (50-100 nm resolution) for life science applications

Source: U14 or U19

Beamline: New, designed for high stability of the focus beam

Microfocusing optics: K-B or ZP, 10¹¹ ph/s into 50 nm spot

Techniques: μ-XRF, μ-XAFS, XRF tomography

Secondary Beamlines

3 x-ray microprobes (micron resolution) for life & environmental science

Source: DW100 (shared)

Beamline: upgraded from X13B, X26A, X27A

Microfocusing optics: K-B, 10¹¹-10¹² ph/s into 1 μm spot

Techniques: μ-XRF, μ-XAFS, μ-XRD, XRF tomography

New NSLS-II Beamline

Source: U14 or U19, high- β section, brightness ~ 1x10²¹ (APS ~ 4x10¹⁹)

Beamline: High beam stability against thermal distortion, vibration, energy scan.

Compatible with higher resolution (down to a few nm)

End station: K-B or ZP optics, 50-100 nm spot size, > 10¹¹ ph/s

Cryo-sample environment, vacuum preferable

Single element only collects a few % of 4p! Need multi-element SDD.

Transition of NSLS X13B, X26A, X27A

Beamline optics: high heat load crystal/multilayers monochromator

Scanning stages: more precise, closed-loop, able to fly scan

Detector: 100-1000x higher counting rate. Capture > 30% of 4π .

Ketek 6 x100 mm²

BNL 32 or 96 pixels 1 mm² ea.

Bent Laue crystals offer medium energy resolution with higher throughout than WDS

Segmented detector for DPC to correlate with biological structures

Transition Timeline

Discussion?

Laboratory/Office Space for XRF Microprobes

A BSL-2 laboratory with sufficient space for:

- biological workbench
- incubator, centrifuge, refrigerator/freezer
- optical fluorescence microscope, confocal microscope
- plunge-freezer, freeze-dryer, high pressure freezer, cryo microtome, freeze-substitution station
- possibly electron microscope

Office space for staffs, postdocs, students, technicians

Funding

- NIH NCRR, NIGMS, NIBIB
- NSF Major Research Instrumentation program
- DOE BER, BES